Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons.

نویسندگان

  • Nicholas D Murchison
  • Brian A Price
  • David A Conner
  • Douglas R Keene
  • Eric N Olson
  • Clifford J Tabin
  • Ronen Schweitzer
چکیده

The scleraxis (Scx) gene, encoding a bHLH transcription factor, is expressed in the progenitors and cells of all tendon tissues. To determine Scx function, we produced a mutant null allele. Scx-/- mice were viable, but showed severe tendon defects, which manifested in a drastically limited use of all paws and back muscles and a complete inability to move the tail. Interestingly, although the differentiation of all force-transmitting and intermuscular tendons was disrupted, other categories of tendons, the function of which is mainly to anchor muscles to the skeleton, were less affected and remained functional, enabling the viability of Scx-/- mutants. The force-transmitting tendons of the limbs and tail varied in the severity to which they were affected, ranging from dramatic failure of progenitor differentiation resulting in the loss of segments or complete tendons, to the formation of small and poorly organized tendons. Tendon progenitors appeared normal in Scx-/- embryos and a phenotype resulting from a failure in the condensation of tendon progenitors to give rise to distinct tendons was first detected at embryonic day (E)13.5. In the tendons that persisted in Scx-/- mutants, we found a reduced and less organized tendon matrix and disorganization at the cellular level that led to intermixing of tenocytes and endotenon cells. The phenotype of Scx-/- mutants emphasizes the diversity of tendon tissues and represents the first molecular insight into the important process of tendon differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tendons of myostatin-deficient mice are small, brittle, and hypocellular.

Tendons play a significant role in the modulation of forces transmitted between bones and skeletal muscles and consequently protect muscle fibers from contraction-induced, or high-strain, injuries. Myostatin (GDF-8) is a negative regulator of muscle mass. Inhibition of myostatin not only increases the mass and maximum isometric force of muscles, but also increases the susceptibility of muscle f...

متن کامل

Intermuscular tendons are essential for the development of vertebrate stomach.

Gastrointestinal motility is ensured by the correct coordination of the enteric nervous system and the visceral smooth muscle cells (SMCs), and defective development of SMCs results in gut malformations and intestinal obstructions. In order to identify the molecular mechanisms that control the differentiation of the visceral mesenchyme into SMCs in the vertebrate stomach, we developed microarra...

متن کامل

Dev104067 2035..2045

Despite the importance of tendons and ligaments for transmitting movement and providing stability to the musculoskeletal system, their development isconsiderably lesswell understood than thatof the tissues they serve to connect. Zebrafish have been widely used to address questions inmuscle and skeletal development, yet few studies describe their tendon and ligament tissues. We have analyzed in ...

متن کامل

Force and scleraxis synergistically promote the commitment of human ES cells derived MSCs to tenocytes

As tendon stem/progenitor cells were reported to be rare in tendon tissues, tendons as vulnerable targets of sports injury possess poor self-repair capability. Human ESCs (hESCs) represent a promising approach to tendon regeneration. But their teno-lineage differentiation strategy has yet to be defined. Here, we report that force combined with the tendon-specific transcription factor scleraxis ...

متن کامل

Scleraxis (Scx) directs lacZ expression in tendon of transgenic mice

Scleraxis is a transcription factor expressed during early periods of mouse tendon morphogenesis. We have determined that tendon is first clearly present in mouse limb at embryonic day 14.5 (E14.5) and, by in situ hybridization, that scleraxis is expressed in the mouse tendons at E14.5. We have also investigated the regulatory elements that direct scleraxis gene expression to the limb tendons. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 134 14  شماره 

صفحات  -

تاریخ انتشار 2007